\subsection{Основные этапы функционирования системы мониторинга}
\begin{enumerate}
\item Активация внешних модулей (получение первоначальных данных);
\itemсбор информации об исследуемом объекте;
\item мониторинг процесса получения первоначальных данных и общего состояния системы;
\item отслеживание и контроль параметров качества;
\item обеспечение персонала и оборудования необходимой информацией;
\item установление взаимодействия между персоналом и оборудованием (также между различными модулями системы);
\item изменение параметров фото- и видеофиксации объекта контроля, в зависимости от параметров внешней среды (например, освещённость) или характеристик состояния и поведения самого объекта контроля.
\caption{Регистрация цифрового изображения в устройстве}
\end{figure}
\subsection{Основные характеристики камеры}
Есть камеры, хранящие набор пикселей, но есть и «векторные» которые могут менять свою точку фокусировки и хранить набор пикселей для каждого из фокусов. Удобно менять точку фокусировки уже после создания снимка.
\begin{itemize}
\item Характеристики оптической системы.
\begin{enumerate}
\item Основная характеристика -- фокусное расстояние (способность собирать в одну точку лучи света, параллельных оптической оси)
\item угол поля зрения (обратная зависимость от фокусного расстояния) -- угол между двумя лучами, пороходящими через центр входного зрачка объектива к наиболее удалённым точкам попадающим на изображения.
\item апертура объектива -- это диаметр светового пучка на входе в объектив, полностью проходящего через диафрагму (есть входная и выходная, чаще всего считают одинаковыми). от этого будет сильно зависеть характеристики изображения.
\item разрешающая сила объектива (характеристики, отображающие его возможность передачи изображения, зависит от предыдущих параметров).
\[\frac{1}{K}=\frac{1}{N}+\frac{1}{M}\]
где $K$ -- это общая разрешающая сила, $N$ - разрешающая сила оптической системы, $M$ - разрешающая сила системы преобразования
\[ K =\frac{NM}{N+M}\]
\end{enumerate}
\item характеристики светочувствительной матрицы
\begin{enumerate}
\item отношение сигнал/шум (часто рассматривается вместе с усилителем) физическая величина, определяющая средние колебания в определённых пределах;
\item физический размер пикселя светочувствительной матрицы;
\item физический размер всей светочувствительной матрицы (ширина на высоту);
\item выдержка -- интервал времении, в течение которого свет попадает на участок светочувствительной матрицы;
\item глубина резкости (глубина резкозти изображаемого пространства) - расстояние вдоль оптической оси линзы.
\end{enumerate}
\end{itemize}
Зная характеристики камеры мы можем по размытому изображению определить расстояние.
должны быть априорные данные об объекте, для которого мы хотим определять характеристики. Если нет данных об объекте -- должны быть размеры объектов в сцене (дорожные знаки, разметка, и так далее), на основе данных о сцене и изображения объекта на сцене можем вычислить нужные параметры.
\[\begin{pmatrix} X\\Y\\Z \end{pmatrix}= R \begin{pmatrix} X_0\\Y_0\\Z_0\end{pmatrix}+ T \]
Матрица поворота, вектор $T$ отвечает за центр масс объекта. Координаты $(X, Y, Z)$ приводятся к двумерным $x', y'$, масштабируются $f(x)$ и сдвигаются $c(x)$.
По изображению можем получить все коэффициенты и посчитать координаты $u, v$. Коэффициенты находятся путём калибровки камеры. И используются для обратного вычисления координат.
В иделаьном случае матрицы будут равны, а их разность равняться нулю.Ошибка возводится в квадрат для увеличения чувствительности и удобства распознавания.
\[\begin{pmatrix} u_i^A\\v_i^A \end{pmatrix}= P \begin{pmatrix} x_i\\y_i\\z_i \end{pmatrix}\]
Зная, что матрица $P$ -- это проекционная матрица, мы можем варьировать матрицы поворота и сдвига $(R, T)$, которые входят в её состав. \textbf{Perspective Points Problem} -- проблема того что реальная точка может восстановиться в две и нужно понять у какой коэффициент ошибки меньше.
Как понять, что объект плоский? Все точки объекта связаны определёнными геометрическими преобразованиями и возможно построить между ними зависимостями. Координаты объекта -- $u,v$; координаты объекта на изображении -- $\tilde{u}, \tilde{v}$
Преимущество в лёгкости, недостаток в сложности настройки подобной системы (две абсолютно идентичные камеры будут всё равно иметь свои искажения, углы зрения и так далее). Частоты камер могут не совпадать. Оси камер должны быть строго параллельны друг другу (соосны).
В результате получаем стереопару. Библиотека \code{calib3d}. Получив стереопару возможно строить карту глубин изображения (depth map). \code{cvStereoBMState} block matching. ищем пиксель с одной камеры в полосе другой камеры. Есть другой вид функций -- \code{...GC...} -- graph cut, вычислительно более сложны, остаются только ветки с наименьшими ошибками сопоставления. \footnote{Bradski - Learning OpenCV, Multiple View Geometry in Computer Vision - Hartley, Zisserman}
В отмеченных областях не можем мерить этим методом -- чувствительность метода будет невысокая (расстояние меняется незначительно, а размытие значительно, или наоборот). Возможно менять точку фокусировки. Есть неоднозначность -- одно и тоже размытие возможно на разных расстояниях. Но из-за разницы отношений возможно изменить расстояние до камеры и понять, к какой точке ближе.
плоскость фокусировки -- это место, где объект чёткий. $D_{o}$ -- расстояние до объекта, $D_{f}$ -- расстояние от объектива до сфокусированного изображения, $D_{r}$ -- расстояние до размытого.
Если объект в точке фокусировки $D_f = d_r, \sigma=0$. $D_f =\frac{f D_o}{d_o - f}$ и это не расстояние до объекта, а расстояние до сфокусированного объекта $D_{of}$.
Размытие зависит не только от расстояния, но может возникать/изменяться и из-за других факторов, таких как качество изображения, света, свойств объекта и цветов. Разница размытий в разных цветах $F$ -- фокусное расстояние.
$f$ -- фокусное расстояние, $m$ - расстояние движения камеры, $d$ -- расстояние до объекта
\[\sigma=\frac{fm}{d}; d =\frac{fm}{\sigma}\]
Размытие будет зависеть от угла движения и других факторов, которые должны попадать в формулу. Формулы отдельные и для расфокусировки и для движения объекта. Все размытия нужно перевести из пикселей в метры
Необходимо найти границы перехода и его центр. Предлагается найти первую производную ($b'(x)$ -- зависимость изменения интенсивности от координаты). Вторая производная ($b''(x)=0$, $c$ -- центр размытия). Третья производная -- находим точки перехода (перепада) $b'''(x)$. Для каждого вычисления нужно выставить пороги, при которых мы точку считаем нулём.
\item Метод Hu-Haan. Аналогично есть изображение и рассматриваем сигнал, зависящий от одной координаты.
Взяли исходный сигнал и добавили дополнительное размытие с известным коэффициентом $\sigma_a$. Получаем сигнал. Взяли исходный сигнал и добавили дополнительное размытие с известным коэффициентом $\sigma_b$. Получаем сигнал. Находим разницу между переразмытыми сигналами ($ba(x)- bb(x)$) разницу между исходным и первично размытым. Находим отношение
Если отношение маленькое - размытие исходного близко к $ba$. Если отношение максимальное - изначальное изображение близко к максимальному. Строим график и определяем $r_{max}$.
и тогда переход - это и есть размытие. Что сделать, чтобы найти сигма-размытие -- переразмываем один раз и получаем известное $\sigma_1\Rightarrow i_1(x)$ находим первую производную для обоих изображений. Берём отношение производных и получаем некоторый график ($\Omega$-образный), по нему можем определить точки, где график будет около нуля и расстояние между ними это и будет размытие.
Если объект сливается с фоном в видимом спектре его обнаружить не удастся.
\textbf{Детекторы} -- обнаружение. \textbf{Дескрипторы} -- обнаружение и описание. Мы всё будем называть детекторами. Хороший алгоритм должен быть инвариантен к шумам и деформациям.
Чтобы найти объект проходим окном (3х3,5х5,9х9) по изображению и смотрим на изменение интенсивности центрального пикселя и окружающих. Пиксель характеризуется координатами $x$, $y$. Получаем 8 направлений смещения относительно пикселя ($u$, $v$).
получаем автокорреляционную матрицу $A_{u,v}(x,y)$. глядя на числа из неё можно понять характерны ли числа. Если числа большие -- пиксель можно характеризовать как угол. Если число $\lambda_1\gg\lambda_2$ то это пиксель ребра. Если оба близки к нулю -- это не характерная точка.
\begin{itemize}
\item [+] инвариантен к поворотам.
\item [-] более сложный по отношению к моравецу, восприимчив к шумам, не инвариантен к масштабированию
Рассматривается точка и окружность, а не прямоугольник. Окружность вписана в квадрат 7х7. Каждый пиксель тестовой выборки изображений $X\in[1...16]$ ищем три состояния -- темнее(D) светлее(B) и такой же(S), раскидываем в три множества.
\[S =
\begin{cases}
d, I_x\leq I_p -t\\
s, I_p-t < I_x < I_p+t\\
b, I_p+t \leq I_x\\
\end{cases}
\]
Строим дерево решений. Множество которое соответствует узлу дерева разбивается на подмножества и на основе этих деревьев не рассматриваем всё, а проходим по дереву и находим характерные точки.