\documentclass{article} \input{settings/common-preamble} \input{settings/bmstu-preamble} \input{settings/fancy-listings-preamble} \author{Локтев Даниил Алексеевич} \title{Алгоритмы (методы)определения параметров объектов в видеопотоке} \date{2023-02-08} \begin{document} \fontsize{14}{18}\selectfont \maketitle \tableofcontents \newpage \section{Введение} \subsection{Основные понятия} РК 15.03 и 10.04 \textbf{Алгоритм} -- это определённая строгая последовательность дискретных действий, которая приводит к конечному результату \textbf{Метод} -- менее конкретный, чем алгоритм, основан на законах окружающей среды. Метод может быть реализован большим числом алгоритмов. \textbf{Подход} -- это совокупность методов. \subsection{Основные этапы работы с изображением} \begin{enumerate} \item Получение изображения (регистрация); \item улучшение изображения (фильтрация, деформация); \item детектирование объектов; \item отслеживание объектов; \item определение параметров объектов (геометрические, кинетические, ...); \item обработка информации (стат. анализ); \item разпознавание объектов; \item сжатие данных об объекте. \end{enumerate} Методы выявления расстояния до объекта: \begin{itemize} \item времяпролётные PMD-камеры \item ToF-устройства (работают по принципу эхолокации, но со светом) \item Обычные камеры (стереозрение, расфокусировка). \end{itemize} \subsection{Основные этапы функционирования системы мониторинга} \begin{enumerate} \item Активация внешних модулей (получение первоначальных данных); \item сбор информации об исследуемом объекте; \item мониторинг процесса получения первоначальных данных и общего состояния системы; \item отслеживание и контроль параметров качества; \item обеспечение персонала и оборудования необходимой информацией; \item установление взаимодействия между персоналом и оборудованием (также между различными модулями системы); \item изменение параметров фото- и видеофиксации объекта контроля, в зависимости от параметров внешней среды (например, освещённость) или характеристик состояния и поведения самого объекта контроля. \end{enumerate} \begin{figure}[H] \centering \fontsize{11}{1}\selectfont \includesvg[scale=.9]{pics/04-vora-00-image-taking-device.svg} \caption{Регистрация цифрового изображения в устройстве} \end{figure} \subsection{Основные характеристики камеры} Есть камеры, хранящие набор пикселей, но есть и «векторные» которые могут менять свою точку фокусировки и хранить набор пикселей для каждого из фокусов. Удобно менять точку фокусировки уже после создания снимка. \begin{itemize} \item Характеристики оптической системы. \begin{enumerate} \item Основная характеристика -- фокусное расстояние (способность собирать в одну точку лучи света, параллельных оптической оси) \begin{figure}[H] \centering \fontsize{14}{1}\selectfont \includesvg[scale=1.01]{pics/04-vora-00-focusing.svg} \end{figure} \item угол поля зрения (обратная зависимость от фокусного расстояния) -- угол между двумя лучами, пороходящими через центр входного зрачка объектива к наиболее удалённым точкам попадающим на изображения. \item апертура объектива -- это диаметр светового пучка на входе в объектив, полностью проходящего через диафрагму (есть входная и выходная, чаще всего считают одинаковыми). от этого будет сильно зависеть характеристики изображения. \item разрешающая сила объектива (характеристики, отображающие его возможность передачи изображения, зависит от предыдущих параметров). \[\frac{1}{K} = \frac{1}{N} + \frac{1}{M} \] где $K$ -- это общая разрешающая сила, $N$ - разрешающая сила оптической системы, $M$ - разрешающая сила системы преобразования \[ K = \frac{NM}{N+M} \] \end{enumerate} \item характеристики светочувствительной матрицы \begin{enumerate} \item отношение сигнал/шум (часто рассматривается вместе с усилителем) физическая величина, определяющая средние колебания в определённых пределах; \item физический размер пикселя светочувствительной матрицы; \item физический размер всей светочувствительной матрицы (ширина на высоту); \item выдержка -- интервал времении, в течение которого свет попадает на участок светочувствительной матрицы; \item глубина резкости (глубина резкозти изображаемого пространства) - расстояние вдоль оптической оси линзы. \end{enumerate} \end{itemize} Зная характеристики камеры мы можем по размытому изображению определить расстояние. \section{Определение параметров объекта} Удалённость от камеры, размеры объекта, кинематические характеристики (скорость, направление движения). \subsection{Метод пропорций} должны быть априорные данные об объекте, для которого мы хотим определять характеристики. Если нет данных об объекте -- должны быть размеры объектов в сцене (дорожные знаки, разметка, и так далее), на основе данных о сцене и изображения объекта на сцене можем вычислить нужные параметры. Исходные данные: \begin{itemize} \item $H_{o}$ -- высота объекта в пикселях $h$ -- априорная высота (в физическом мире); \item $\alpha_{k}, \beta_{k}$ -- характеристики камеры -- углы обзора кадра по вертикали и горизонтали, соответственно. \item $H_{k}$, $W_{k}$ -- высота и ширина кадра \end{itemize} найти $l$ -- расстояние до объекта, $v$ -- скорость. \begin{figure}[H] \centering \fontsize{14}{1}\selectfont \includesvg[scale=1.01]{pics/04-vora-00-obj-height.svg} \end{figure} Высота объекта находится по формулам \begin{equation*} \begin{gathered} \tg(\alpha) = \frac{h}{l} \approx \alpha_{o}\\ \frac{\alpha_o}{\alpha_k} = \frac{H_o}{H_k}\Rightarrow \alpha_o = \frac{\alpha_k \cdot H_o}{H_k}\\ l = \frac{h \cdot H_k}{\alpha_k \cdot H_o} \end{gathered} \end{equation*} Для вычисления скорости нужно взять два кадра с известным временем между ними. \begin{equation*} \begin{gathered} v=\sqrt{v_x^2, v_y^2, v_z^2}\\ \frac{\Delta\alpha_o}{\alpha_k} = \frac{\Delta Y_o}{H_k}\Rightarrow \Delta\alpha_o = \frac{\alpha_k \cdot \Delta Y_o}{H_k}\\ \tg\Delta\alpha_o = \frac{\Delta y}{l} \approx \Delta\alpha_o\\ \Delta y = \frac{\alpha_k\cdot\Delta Y_o\dot l}{H_k}\\ v_y = \frac{\Delta y}{N\cdot\tau} = \frac{\alpha_k\cdot\Delta y_o\cdot l}{H_k\cdot N\tau} \end{gathered} \end{equation*} где $N$ -- число кадров между замерами, а $\tau$ -- длительность одного кадра (из информации о кадре (fps, frames pre second, кадров в секунду)). \begin{figure}[H] \centering \fontsize{12}{1}\selectfont \includesvg[scale=1.01]{pics/04-vora-00-obj-moving.svg} \end{figure} $v_x$ тоже касательный считается по аналогии \[ v_x = \frac{\beta_k\cdot\Delta_o\cdot l}{W_k \cdot N\tau} \] Для $v_z$ формула отличается, так как движение радиальное и мы фактически считаем расстояние до объекта \[ v_z = \frac{\Delta z}{N\tau} = \frac{\Delta l(t)}{N\tau} = \frac{h\cdot H_k}{N\tau\alpha_k}\cdot\left(\frac{1}{H_o(t+N\tau)} - \frac{1}{H_o(t)}\right) \] Основной недостаток метода в том, что нам нужны априорные знания об объектах. \subsection{Метод pinhole} \begin{figure}[H] \centering \fontsize{14}{1}\selectfont \includesvg[scale=1.01]{pics/04-vora-00-pinhole.svg} \end{figure} Мы знаем, что все лучи проходят через одну точку, тогда стоит задача по координатам $(X, Y, Z)$ получить двумерные координаты $(u, v)$. \begin{figure}[H] \centering \fontsize{14}{1}\selectfont \includesvg[scale=1.01]{pics/04-vora-00-pinhole-iso.svg} \end{figure} \[ \begin{pmatrix} X\\Y\\Z \end{pmatrix} = R \begin{pmatrix} X_0\\Y_0\\Z_0 \end{pmatrix} + T \] Матрица поворота, вектор $T$ отвечает за центр масс объекта. Координаты $(X, Y, Z)$ приводятся к двумерным $x', y'$, масштабируются $f(x)$ и сдвигаются $c(x)$. \begin{equation*} \begin{gathered} x' = \frac{x}{Z}; y' = \frac{y}{Z} \\ u = f_x\cdot x' + c_x\\ v = f_y\cdot y' + c_y\\ \end{gathered} \end{equation*} \[ \begin{pmatrix} u \\ v \end{pmatrix} = P \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} \] где $P$ -- проекционная матрица. \[ P = \begin{pmatrix} f(x) & 0 & c(x) \\ 0 & f(y) & c(y) \\ 0 & 0 & 1 \end{pmatrix} \] В данной задаче возникает проблема искажений (аберрации, дисторсия). \[x'' = x'(1+k_1*r^2 + k_2*r^4 + k_3*r^6) + 2p_1x'y' + p_2(r^2+2x'^2)\] \[r^2 = x'^2 + y'^2\] аналошгично $y'$ \[y'' = y'(1+k_1*r^2 + k_2*r^4 + k_3*r^6) + p_1(r^2+2y'^2) + 2p_2x'y'\] По изображению можем получить все коэффициенты и посчитать координаты $u, v$. Коэффициенты находятся путём калибровки камеры. И используются для обратного вычисления координат. \begin{figure}[H] \centering \fontsize{12}{1}\selectfont \includesvg[scale=1.01]{pics/04-vora-00-blurring.svg} \end{figure} $A$ -- не чёткое изображение, на рисунке -- границы размытия $\sigma$. Цель минимизировать ошибку, в идеале, получить ошибку, равную нулю. \[error(A) = \sum_i\left( \begin{pmatrix} u_i\\v_i \end{pmatrix} - \begin{pmatrix} u_i^A\\v_i^A \end{pmatrix} \right)^2 \to \min(R, T)\] В иделаьном случае матрицы будут равны, а их разность равняться нулю.Ошибка возводится в квадрат для увеличения чувствительности и удобства распознавания. \[ \begin{pmatrix} u_i^A\\v_i^A \end{pmatrix} = P \begin{pmatrix} x_i\\y_i\\z_i \end{pmatrix} \] Зная, что матрица $P$ -- это проекционная матрица, мы можем варьировать матрицы поворота и сдвига $(R, T)$, которые входят в её состав. \textbf{Perspective Points Problem} -- проблема того что реальная точка может восстановиться в две и нужно понять у какой коэффициент ошибки меньше. \subsection{Определение на изображении планарных (плоских) объектов} Гомография. \begin{figure}[H] \centering \fontsize{12}{1}\selectfont \includesvg[scale=1.01]{pics/04-vora-00-homographia.svg} \end{figure} Как понять, что объект плоский? Все точки объекта связаны определёнными геометрическими преобразованиями и возможно построить между ними зависимостями. Координаты объекта -- $u,v$; координаты объекта на изображении -- $\tilde{u}, \tilde{v}$ \begin{equation*} \begin{gathered} \tilde{u} = \frac{h_{11}u + h_{12}v + h_{13}}{h_{31}u + h_{32}v + h_{33}}\\ \tilde{v} = \frac{h_{21}u + h_{22}v + h_{13}}{h_{31}u + h_{32}v + h_{33}}\\ \begin{pmatrix} \tilde{u}\\\tilde{v}\\1 \end{pmatrix} = H \cdot \begin{pmatrix} u\\ v\\ 1 \end{pmatrix} \end{gathered} \end{equation*} Матрица гомографии \[ H = \begin{pmatrix} h_{11}&h_{12}&h_{13}\\h_{21}&h_{22}&h_{23}\\h_{31}&h_{32}&h_{33} \end{pmatrix} \] Основная задача -- поиск точек, подверженных гомографии. Такой поиск называется схема RANSAC. \end{document}