BMSTU/04-tsaf-01-hw.tex

78 lines
3.2 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[a4paper,fontsize=14bp]{article}
\input{settings/common-preamble}
\input{settings/fancy-listings-preamble}
\input{settings/bmstu-preamble}
\numerationTop
\begin{document}
\thispagestyle{empty}
\makeBMSTUHeader
\makeReportTitle{домашней}{№ 1}{Введение}{Анализ и прогнозирование временн\'{ы}х рядов}{а}{Е.А.Гребенюк}
\newpage
\sloppy
\pagestyle{fancy}
\section{Задание}
Рассмотрим процесс
\[y_t = \xi_t - 2.5\xi_{t-1}+\xi_{t-2}, \xi_t \sim N(0,1)\]
\begin{enumerate}
\item Является ли процесс $y_t$ обратимым и стационарным?
\item Найти автоковариационную функцию процесса $y_t$.
\item Вычислить дисперсию процесса $y_t$.
\item Рассматривается процесс ARMA(1, 1):
$1-\alpha L y_t = (1-0.5L)\xi_t$, где $\alpha$ -- некоторое действительное число и $\xi_t = N(0,\sigma_\xi^2)$. Найти
\begin{itemize}
\item все $\alpha \in \mathbb{R}$ для которых процесс является стационарным;
\item все $\alpha \in \mathbb{R}$ для которых процесс является обратимым
\end{itemize}
\end{enumerate}
\section{Выполнение}
\subsection{Обратимость и стационарность}
Для процесса возможно построить характеристическое уравнение. Если корни характеристического уравнения по модулю больше 1, то процесс обратим. Опишем в с помощью оператора сдвига
\[y_t = 1-2.5L+1L^2\]
и решим квадратное уравнение
\begin{equation*}
\begin{gathered}
1-2.5z+z^2=0\\
z = \frac{-b\pm\sqrt{b^2-4ac}}{2a}\\
z_1 = \frac{-2.5-\sqrt{-2.5^2-4}}{2}\\
z_1 = 1.25 + \sqrt{1.5625-1} \approx 2\\
z_2 = \frac{-2.5+\sqrt{-2.5^2-4}}{2}\\
z_2 = 1.25 - \sqrt{1.5625-1} \approx 0.5
\end{gathered}
\end{equation*}
Только один корень уравнения по модулю больше, поэтому процесс \textbf{не является обратимым}.
Процесс \textbf{является стационарным} по теореме Вольда.
\subsection{Автоковариационная функция}
\begin{equation*}
\begin{gathered}
\gamma(0) = Var(y_t) = 8.25\\
\gamma(1) = cov(\xi_t - 2.5\xi_{t-1}+\xi_{t-2}, \xi_{t-1} - 2.5\xi_{t-2}+\xi_{t-3})=\\
= E[\xi_t - 2.5\xi_{t-1}+\xi_{t-2}, \xi_{t-1} - 2.5\xi_{t-2}+\xi_{t-3}] = \\
-2.5 \cdot 1 \cdot 1 + -2.5 \cdot 1 \cdot 1 = -5\\
\gamma(2) = E[\xi_t - 2.5\xi_{t-1}+\xi_{t-2}, \xi_{t-2} - 2.5\xi_{t-3}+\xi_{t-4}] = 1 \cdot 1 = 1\\
\gamma(3) = 0
\end{gathered}
\end{equation*}
\subsection{Дисперсия процесса}
\begin{equation*}
\begin{gathered}
Var(y_t) = ?\\
Var(y_t) = Var(\xi_t - 2.5\xi_{t-1}+\xi_{t-2})=\\
= Var(\xi_t) +Var(-2.5\xi_{t-1})+Var(\xi_{t-2}))=\\
=Var(\xi_t) + 6.25(\xi_{t-1}) + Var(\xi_t) = \\
8.25 \cdot Var(\xi_t) = 8.25
\end{gathered}
\end{equation*}
\subsection{Процесс ARMA(1, 1)}
\end{document}