bmstu-marl/multiagent/scenarios/simple_adversary.py

140 lines
5.8 KiB
Python
Raw Permalink Normal View History

import numpy as np
from multiagent.core import World, Agent, Landmark
from multiagent.scenario import BaseScenario
class Scenario(BaseScenario):
def make_world(self):
world = World()
# set any world properties first
world.dim_c = 2
num_agents = 3
world.num_agents = num_agents
num_adversaries = 1
num_landmarks = num_agents - 1
# add agents
world.agents = [Agent() for i in range(num_agents)]
for i, agent in enumerate(world.agents):
agent.name = 'agent %d' % i
agent.collide = False
agent.silent = True
agent.adversary = True if i < num_adversaries else False
agent.size = 0.15
# add landmarks
world.landmarks = [Landmark() for i in range(num_landmarks)]
for i, landmark in enumerate(world.landmarks):
landmark.name = 'landmark %d' % i
landmark.collide = False
landmark.movable = False
landmark.size = 0.08
# make initial conditions
self.reset_world(world)
return world
def reset_world(self, world):
# random properties for agents
world.agents[0].color = np.array([0.85, 0.35, 0.35])
for i in range(1, world.num_agents):
world.agents[i].color = np.array([0.35, 0.35, 0.85])
# random properties for landmarks
for i, landmark in enumerate(world.landmarks):
landmark.color = np.array([0.15, 0.15, 0.15])
# set goal landmark
goal = np.random.choice(world.landmarks)
goal.color = np.array([0.15, 0.65, 0.15])
for agent in world.agents:
agent.goal_a = goal
# set random initial states
for agent in world.agents:
agent.state.p_pos = np.random.uniform(-1, +1, world.dim_p)
agent.state.p_vel = np.zeros(world.dim_p)
agent.state.c = np.zeros(world.dim_c)
for i, landmark in enumerate(world.landmarks):
landmark.state.p_pos = np.random.uniform(-1, +1, world.dim_p)
landmark.state.p_vel = np.zeros(world.dim_p)
def benchmark_data(self, agent, world):
# returns data for benchmarking purposes
if agent.adversary:
return np.sum(np.square(agent.state.p_pos - agent.goal_a.state.p_pos))
else:
dists = []
for l in world.landmarks:
dists.append(np.sum(np.square(agent.state.p_pos - l.state.p_pos)))
dists.append(np.sum(np.square(agent.state.p_pos - agent.goal_a.state.p_pos)))
return tuple(dists)
# return all agents that are not adversaries
def good_agents(self, world):
return [agent for agent in world.agents if not agent.adversary]
# return all adversarial agents
def adversaries(self, world):
return [agent for agent in world.agents if agent.adversary]
def reward(self, agent, world):
# Agents are rewarded based on minimum agent distance to each landmark
return self.adversary_reward(agent, world) if agent.adversary else self.agent_reward(agent, world)
def agent_reward(self, agent, world):
# Rewarded based on how close any good agent is to the goal landmark, and how far the adversary is from it
shaped_reward = True
shaped_adv_reward = True
# Calculate negative reward for adversary
adversary_agents = self.adversaries(world)
if shaped_adv_reward: # distance-based adversary reward
adv_rew = sum([np.sqrt(np.sum(np.square(a.state.p_pos - a.goal_a.state.p_pos))) for a in adversary_agents])
else: # proximity-based adversary reward (binary)
adv_rew = 0
for a in adversary_agents:
if np.sqrt(np.sum(np.square(a.state.p_pos - a.goal_a.state.p_pos))) < 2 * a.goal_a.size:
adv_rew -= 5
# Calculate positive reward for agents
good_agents = self.good_agents(world)
if shaped_reward: # distance-based agent reward
pos_rew = -min(
[np.sqrt(np.sum(np.square(a.state.p_pos - a.goal_a.state.p_pos))) for a in good_agents])
else: # proximity-based agent reward (binary)
pos_rew = 0
if min([np.sqrt(np.sum(np.square(a.state.p_pos - a.goal_a.state.p_pos))) for a in good_agents]) \
< 2 * agent.goal_a.size:
pos_rew += 5
pos_rew -= min(
[np.sqrt(np.sum(np.square(a.state.p_pos - a.goal_a.state.p_pos))) for a in good_agents])
return pos_rew + adv_rew
def adversary_reward(self, agent, world):
# Rewarded based on proximity to the goal landmark
shaped_reward = True
if shaped_reward: # distance-based reward
return -np.sum(np.square(agent.state.p_pos - agent.goal_a.state.p_pos))
else: # proximity-based reward (binary)
adv_rew = 0
if np.sqrt(np.sum(np.square(agent.state.p_pos - agent.goal_a.state.p_pos))) < 2 * agent.goal_a.size:
adv_rew += 5
return adv_rew
def observation(self, agent, world):
# get positions of all entities in this agent's reference frame
entity_pos = []
for entity in world.landmarks:
entity_pos.append(entity.state.p_pos - agent.state.p_pos)
# entity colors
entity_color = []
for entity in world.landmarks:
entity_color.append(entity.color)
# communication of all other agents
other_pos = []
for other in world.agents:
if other is agent: continue
other_pos.append(other.state.p_pos - agent.state.p_pos)
if not agent.adversary:
return np.concatenate([agent.goal_a.state.p_pos - agent.state.p_pos] + entity_pos + other_pos)
else:
return np.concatenate(entity_pos + other_pos)