diff --git a/build/main.pdf b/build/main.pdf index 18c5313..02d8e61 100644 Binary files a/build/main.pdf and b/build/main.pdf differ diff --git a/main.tex b/main.tex index 0edded2..550a01b 100644 --- a/main.tex +++ b/main.tex @@ -21,171 +21,9 @@ \import{sections/}{05-conditions} % 06 cycles \import{sections/}{06-cycles} +% 07 functions +\import{sections/}{07-functions} -\section{Функции} -\subsection{Понятие функции, параметры и аргументы} -Функция - это такая обособленная часть кода, которую можно выполнять любое количество раз. У функций обязательно в таком порядке должны быть описаны: тип возвращаемого значения, название, параметры и так называемое тело, т есть собственно исполняемый код. Рассмотрим более детально функцию \code{int main (int argc, char *argv[])}: \code{int} - это \textit{тип возвращаемого значения}, то есть на том месте, откуда будет вызвана эта функция, в результате её работы по выполнении оператора \code{return;}, появится некое целое число. Возвращаемые значения могут быть любых типов. В случае же когда функция не должна возвращать результат своей работы, или никакого возвращаемого результата не предполагается, указывается ключевое слово \code{void} (англ. - пустота). То есть на месте вызова функции, в результате её выполнения, не появится никакого значения (обычно, таким значением бывает rvalue). Оператор \code{return;} обязателен для не-void функций, а в \code{void} функциях может присутствовать или нет, но никогда не содержит возвращаемого значения. \code{main} - это \textit{название функции}. Функция именно с таким названием, написанным с маленькой буквы, всегда является точкой входа в программу (\hyperref[text:main]{\ref{text:main}}). Операционная система ищет именно эту функцию, когда получает команду на выполнение программы. -\frm{Названия функций в рамках одной программы не должны повторяться и не должны начинаться с цифр или спецсимволов, также, как и названия переменных (см стр. \hyperref[text:naming]{\pageref{text:naming}}) никаких других ограничений на название функций не накладывается.} -Конструкция в круглых скобках \code{(int argc, char *argv[])} - это \textit{параметры функции}. Параметры функции - это такие переменные, которые создаются при вызове функции и существуют только внутри неё. С их помощью можно передать в функцию какие-то аргументы и исходные данные для работы. Параметры пишутся в круглых скобках сразу после названия функции. В случае если функция не принимает параметров необходимо поставить после названия пустые круглые скобки (\code{()}). Весь код, содержащийся в фигурных скобках после параметров функции называется \textit{телом функции}. Это те операторы и команды, которые будут последовательно выполнены при вызове функции. В теле функции мы можем \textbf{вызывать} другие функции, но \textbf{никогда не можем объявлять, описывать или создавать в теле функции другие функции}. Никаких других ограничений на написание тела функции язык не накладывает. Таким образом, общий вид функции имеет следующий вид: - -\begin{figure}[h!] -\begin{verbatim} -ТипВозвращаемогоЗначения Имя (СписокАргументов) -{ - ТелоФункции - return ВозвращаемоеЗначение; -} -\end{verbatim} -\end{figure} -Далее приведём небольшой пример, который призван продемонстрировать, как выглядит простейшее \textit{объявление} и \textit{описпание} функций (function declaration and definition), а также их вызов из функции \code{int main (int argc, char *argv[])}. - -\begin{figure}[h!] - \begin{lstlisting}[language=C,style=CCodeStyle] - void somefunction() { // <-- this is a function - printf("some function\n"); - // some useful things - } - - int anotherFunction() { - printf("another function\n"); - // more useful things happened - return 10; - } - - int main (int argc, const char* argv[]) { - printf("main function\n"); - // more useful things - somefunction(); // <-- this is invocation - int x = anotherFunction(); - printf("x = %d\n", 10); - return 0; - } - \end{lstlisting} -\end{figure} -Так, на шестнадцатой строке кода выше мы видим, что \textbf{вернувшееся} из функции, объявленной на шестой строке целое число \code{10} будет присвоено переменной \code{x} и выведено в терминал семнадцатой строкой. - -\begin{figure}[h!] -\begin{verbatim} -$ ./program -main function -some function -another function -x = 10 -$ -\end{verbatim} -\end{figure} -Функции принято разделять на проверяющие, считающие и выводящие, и каждая из вышеописанных функций не должна нести дополнительной нагрузки. То есть, функция не должна знать откуда в программе появились её параметры, и где будет использован результат её работы. То есть сам язык таких ограничений не накладывает, но такой подход к написанию функций делает их значительно более гибкими и даёт им возможность быть переиспользованными. Без применения такого подхода было бы невозможно писать абстрактные библиотеки и фреймворки. -\frm{\textbf{Параметры функции} - это те переменные, которые указываются в круглых скобках при определении или описании функции. Параметры функции существуют как локальные переменные в кодовом блоке тела функции.\textbf{Аргументы функции} - это те значения переменных или литералов, которые указываются в круглых скобках при выхове функции.} -Для примера опишем функцию, суммирующую два числа. Для простоты, в качестве аргументов она будет принимать целые числа и возвращать целочисленный результат. Обратите внимание что функция не <<знает>> откуда взялись эти числа, мы можем их прочитать из консоли, можем задать в виде констант или получить в результате работы какой-то другой функции. Внутри функции \code{int main (int argc, char *argv[])} программа вызывает нашу функцию \code{sum(int x, int y)} суммирующую два числа и передаём в качестве аргументов эти числа. - -\begin{figure}[h!] - \begin{lstlisting}[language=C,style=CCodeStyle] - int sum(int x, int y) { - int result = x + y; - return result; - } - - int main (int argc, const char* argv[]) { - int a; - scanf("%d", &a); - int x = sum(50, a); - printf("x = %d\n", 10); - return 0; - } - \end{lstlisting} -\end{figure} -Обратите внимание, что в качестве аргументов мы можем передавать константные значения, а также переменные. Значения переменных мы можем получить например из консоли, либо в результате выполнения какой-нибудь другой функции. - -\begin{figure}[h!] -\begin{verbatim} -$ ./program -x = 110 -$ -\end{verbatim} -\end{figure} -Как уже было сказано, параметры - это переменные, которые хранят в себе некоторые начальные значения вызова функции. Параметризация позволяет использовать одни и те же функции с разными исходными данными. Приглядимся повнимательнее к хорошо знакомой нам функции \code{printf();}. Строка, которую мы пишем в круглых скобках в двойных кавычках - это аргумент функции. То есть мы знаем, что функция умеет выводить на экран строки, как именно - нам нет дела, а какие именно строки - мы указываем в качестве аргумента. Функция \code{printf();} примечательна еще и тем, что она может принимать в себя нефиксированное количество аргументов. Описание работы таких функций, а также их написание выходит далеко за пределы основ языка, нам важно помнить что мы можем это использовать. В аргументе функции \code{printf()} мы можем написать заполнитель соответствующего типа и, например, вызвать нашу функцию \code{sum}. -\subsection{Оформление функций. Понятие рефакторинга} -Теперь мы без проблем можем оформить уже существующие у нас программы в виде функций. Например, оформим в виде функции программу проверки простоты числа. Для этого опишем функцию которая возвращает целое число, назовем ее \code{isPrime()}, в качестве параметра она будет принимать целое число, назовем его \code{number}. Найдем в предыдущих разделах (стр. \hyperref[code:isPrime]{\pageref{code:isPrime}}) программу определения простоты числа и скопируем в тело функции. Внесем небольшие правки, уберем вывод так как это будет, можно сказать, классическая проверяющая функция, вывод оставим для функции \code{int main (int argc, char *argv[])}, пусть о наличии у нас терминала <<знает>> только она. -\frm{Такой процесс, перенос участков кода между функциями, выделение участков кода в функции, синтаксические, стилистические и другие улучшения, называетя \textbf{рефакторингом}. Обычно, рефакторингом занимаются сами разработчики в свободное от основной деятельности времени, в периоды код ревью или по необходимости улучшить читаемость/повторяемость собственного кода.} -Следовательно, допишем условия: если делителей два, то число простое, возвращаем \code{ИСТИНУ}, то есть любое ненулевое значение, в нашем примере - единицу. Если же делителей больше – число не простое, возвращаем \code{ЛОЖЬ}, в нашем случае, это ноль. Такой вывод можно записать и другим способом, \code{return (dividers == 2)} – это выражение в случае истины вернет единицу в случае лжи ноль. Или можно воспользоваться тернарным оператором, то есть, написать \code{return (dividers == 2) ? 1 : 0}: если условие в скобках истинно вернется единица, ложно – ноль. Также важно, что выйти из функции мы можем на любом этапе ее выполнения, например если делителей уже три, то нам нужно не завершать цикл, а вернуть \code{ЛОЖЬ} из функции. -\begin{multicols}{2} -\begin{lstlisting}[language=C,style=CCodeStyle] - -int isPrime(int number){ - int dividers = 0, i = 1; - - - while(i <= number){ - if(number % i++ ==0) - dividers++; - else - continue; - - if (dividers == 3) - return 0; - } - return (dividers == 2) -} -\end{lstlisting} -\columnbreak -\begin{lstlisting}[language=C,style=CCodeStyle] -int main(int argc, char *argv[]) { - int number; - int dividers = 0, i = 1; - printf("Enter number: "); - scanf("%d", &number); - while (i <= number) { - if (number++ % i == 0) { - dividers++; - } else { - continue; - } - if (dividers == 3) - break; - } - printf("Number %d is%s prime", - number, - (dividers == 2) ? "" : " not" - ); -} -\end{lstlisting} -\end{multicols} -Немного подправив вывод, внесем в него вызов функции \code{isPrime()} и объявим переменную \code{int num}, которую будем передавать в качестве аргумента в функцию \code{isPrime()}. Запустим нашу программу и убедимся что все работает – число 71 действительно является простым. - -\begin{figure}[h!] - \begin{lstlisting}[language=C,style=CCodeStyle] - int main (int argc, const char* argv[]) { - int num = 71; - printf("Entered number %d is%s prime \n", - number, - isPrime(num) ? "" : " not" - ); - return 0; - } - - \end{lstlisting} -\end{figure} -Теперь мы можем написать программы любой сложности, содержащие функции \code{isPrime()} или \code{sum()}. О том, что мы работаем с консолью, в нашем случае должна знать только функция \code{int main (int argc, char *argv[])}, поэтому ввод значений и вывод на экран мы оставим в ней, а подсчёты, проверки или другие важные действия и алгоритмы положим в функции. Именно это абстрагирование является сильной стороной использования функций, так, например, у нас нет необходимости каждый раз вставлять в программу код взаимодействия с консолью при выводе каждой строки, а можно ограничиться вызовом функции \code{printf();} - -% Пришло время поговорить про прототипы. -% Зачастую возникают ситуации, когда функция не описана до точки входа в программу, или вовсе лежит в другом файле. В этом случае мы должны сообщить компилятору, что такую функцию придётся дополнительно поискать. Для этого необходимо указать всю информацию о функции, кроме её тела. Такой оператор называется прототип функции. -% Опишем прототип функции isPrime, описав сигнатуру этой функции. - - - - - - - - - - - -% int isPrime(int number); -% И пара слов о заголовочных файлах. Заголовочные файлы это мощный инструмент модульной разработки. Мы уже неоднократно видели подключение заголовочного файла stdio.h, давайте посмотрим, что же скрывает и как именно работает эта строка. Обнаружив данный файл на диске мы видим, что в нём содержатся другие подключения библиотек, директивы препроцессора (о которых более подробно мы будем говорить на следующих занятиях) и прототипы функций (например, так часто используемой нами -% printf()). (Где-то вот здесь… на 259 строке) - -% // Здесь показ содержимого stdio.h \section{Указатели} % Коллеги, здравствуйте. Вот и пришла пора поговорить о серьёзном низкоуровневом программировании. О том, от чего стараются оградить программистов языки высокого уровня и современные фреймворки. Об указателях. % На этом уроке мы поговорим о том, что такое указатели и как они соотносятся с остальными переменными, что такое передача аргумента по значению и по ссылке. diff --git a/sections/07-functions.tex b/sections/07-functions.tex new file mode 100644 index 0000000..adea780 --- /dev/null +++ b/sections/07-functions.tex @@ -0,0 +1,155 @@ +\section{Функции} +\subsection{Понятие функции, параметры и аргументы} +Функция - это такая обособленная часть кода, которую можно выполнять любое количество раз. У функций обязательно в таком порядке должны быть описаны: тип возвращаемого значения, название, параметры и так называемое тело, т есть собственно исполняемый код. Рассмотрим более детально функцию \code{int main (int argc, char *argv[])}: \code{int} - это \textit{тип возвращаемого значения}, то есть на том месте, откуда будет вызвана эта функция, в результате её работы по выполнении оператора \code{return;}, появится некое целое число. Возвращаемые значения могут быть любых типов. В случае же когда функция не должна возвращать результат своей работы, или никакого возвращаемого результата не предполагается, указывается ключевое слово \code{void} (англ. - пустота). То есть на месте вызова функции, в результате её выполнения, не появится никакого значения (обычно, таким значением бывает rvalue). Оператор \code{return;} обязателен для не-void функций, а в \code{void} функциях может присутствовать или нет, но никогда не содержит возвращаемого значения. \code{main} - это \textit{название функции}. Функция именно с таким названием, написанным с маленькой буквы, всегда является точкой входа в программу (\hyperref[text:main]{\ref{text:main}}). Операционная система ищет именно эту функцию, когда получает команду на выполнение программы. +\frm{Названия функций в рамках одной программы не должны повторяться и не должны начинаться с цифр или спецсимволов, также, как и названия переменных (см стр. \hyperref[text:naming]{\pageref{text:naming}}) никаких других ограничений на название функций не накладывается.} +Конструкция в круглых скобках \code{(int argc, char *argv[])} - это \textit{параметры функции}. Параметры функции - это такие переменные, которые создаются при вызове функции и существуют только внутри неё. С их помощью можно передать в функцию какие-то аргументы и исходные данные для работы. Параметры пишутся в круглых скобках сразу после названия функции. В случае если функция не принимает параметров необходимо поставить после названия пустые круглые скобки (\code{()}). Весь код, содержащийся в фигурных скобках после параметров функции называется \textit{телом функции}. Это те операторы и команды, которые будут последовательно выполнены при вызове функции. В теле функции мы можем \textbf{вызывать} другие функции, но \textbf{никогда не можем объявлять, описывать или создавать в теле функции другие функции}. Никаких других ограничений на написание тела функции язык не накладывает. Таким образом, общий вид функции имеет следующий вид: + +\begin{figure}[h!] +\begin{verbatim} +ТипВозвращаемогоЗначения Имя (СписокАргументов) +{ + ТелоФункции + return ВозвращаемоеЗначение; +} +\end{verbatim} +\end{figure} +Далее приведём небольшой пример, который призван продемонстрировать, как выглядит простейшее \textit{объявление} и \textit{описпание} функций (function declaration and definition), а также их вызов из функции \code{int main (int argc, char *argv[])}. + +\begin{figure}[h!] + \begin{lstlisting}[language=C,style=CCodeStyle] + void somefunction() { // <-- this is a function + printf("some function\n"); + // some useful things + } + + int anotherFunction() { + printf("another function\n"); + // more useful things happened + return 10; + } + + int main (int argc, const char* argv[]) { + printf("main function\n"); + // more useful things + somefunction(); // <-- this is invocation + int x = anotherFunction(); + printf("x = %d\n", 10); + return 0; + } + \end{lstlisting} +\end{figure} +Так, на шестнадцатой строке кода выше мы видим, что \textbf{вернувшееся} из функции, объявленной на шестой строке целое число \code{10} будет присвоено переменной \code{x} и выведено в терминал семнадцатой строкой. + +\begin{figure}[h!] +\begin{verbatim} +$ ./program +main function +some function +another function +x = 10 +$ +\end{verbatim} +\end{figure} +Функции принято разделять на проверяющие, считающие и выводящие, и каждая из вышеописанных функций не должна нести дополнительной нагрузки. То есть, функция не должна знать откуда в программе появились её параметры, и где будет использован результат её работы. То есть сам язык таких ограничений не накладывает, но такой подход к написанию функций делает их значительно более гибкими и даёт им возможность быть переиспользованными. Без применения такого подхода было бы невозможно писать абстрактные библиотеки и фреймворки. +\frm{\textbf{Параметры функции} - это те переменные, которые указываются в круглых скобках при определении или описании функции. Параметры функции существуют как локальные переменные в кодовом блоке тела функции.\textbf{Аргументы функции} - это те значения переменных или литералов, которые указываются в круглых скобках при выхове функции.} +Для примера опишем функцию, суммирующую два числа. Для простоты, в качестве аргументов она будет принимать целые числа и возвращать целочисленный результат. Обратите внимание что функция не <<знает>> откуда взялись эти числа, мы можем их прочитать из консоли, можем задать в виде констант или получить в результате работы какой-то другой функции. Внутри функции \code{int main (int argc, char *argv[])} программа вызывает нашу функцию \code{sum(int x, int y)} суммирующую два числа и передаём в качестве аргументов эти числа. + +\begin{figure}[h!] + \begin{lstlisting}[language=C,style=CCodeStyle] + int sum(int x, int y) { + int result = x + y; + return result; + } + + int main (int argc, const char* argv[]) { + int a; + scanf("%d", &a); + int x = sum(50, a); + printf("x = %d\n", 10); + return 0; + } + \end{lstlisting} +\end{figure} +Обратите внимание, что в качестве аргументов мы можем передавать константные значения, а также переменные. Значения переменных мы можем получить например из консоли, либо в результате выполнения какой-нибудь другой функции. + +\begin{figure}[h!] +\begin{verbatim} +$ ./program +x = 110 +$ +\end{verbatim} +\end{figure} +Как уже было сказано, параметры - это переменные, которые хранят в себе некоторые начальные значения вызова функции. Параметризация позволяет использовать одни и те же функции с разными исходными данными. Приглядимся повнимательнее к хорошо знакомой нам функции \code{printf();}. Строка, которую мы пишем в круглых скобках в двойных кавычках - это аргумент функции. То есть мы знаем, что функция умеет выводить на экран строки, как именно - нам нет дела, а какие именно строки - мы указываем в качестве аргумента. Функция \code{printf();} примечательна еще и тем, что она может принимать в себя нефиксированное количество аргументов. Описание работы таких функций, а также их написание выходит далеко за пределы основ языка, нам важно помнить что мы можем это использовать. В аргументе функции \code{printf()} мы можем написать заполнитель соответствующего типа и, например, вызвать нашу функцию \code{sum}. +\subsection{Оформление функций. Понятие рефакторинга} +Теперь мы без проблем можем оформить уже существующие у нас программы в виде функций. Например, оформим в виде функции программу проверки простоты числа. Для этого опишем функцию которая возвращает целое число, назовем ее \code{isPrime()}, в качестве параметра она будет принимать целое число, назовем его \code{number}. Найдем в предыдущих разделах (стр. \hyperref[code:isPrime]{\pageref{code:isPrime}}) программу определения простоты числа и скопируем в тело функции. Внесем небольшие правки, уберем вывод так как это будет, можно сказать, классическая проверяющая функция, вывод оставим для функции \code{int main (int argc, char *argv[])}, пусть о наличии у нас терминала <<знает>> только она. +\frm{Такой процесс, перенос участков кода между функциями, выделение участков кода в функции, синтаксические, стилистические и другие улучшения, называетя \textbf{рефакторингом}. Обычно, рефакторингом занимаются сами разработчики в свободное от основной деятельности времени, в периоды код ревью или по необходимости улучшить читаемость/повторяемость собственного кода.} +Следовательно, допишем условия: если делителей два, то число простое, возвращаем \code{ИСТИНУ}, то есть любое ненулевое значение, в нашем примере - единицу. Если же делителей больше – число не простое, возвращаем \code{ЛОЖЬ}, в нашем случае, это ноль. Такой вывод можно записать и другим способом, \code{return (dividers == 2)} – это выражение в случае истины вернет единицу в случае лжи ноль. Или можно воспользоваться тернарным оператором, то есть, написать \code{return (dividers == 2) ? 1 : 0}: если условие в скобках истинно вернется единица, ложно – ноль. Также важно, что выйти из функции мы можем на любом этапе ее выполнения, например если делителей уже три, то нам нужно не завершать цикл, а вернуть \code{ЛОЖЬ} из функции. +\begin{multicols}{2} +\begin{lstlisting}[language=C,style=CCodeStyle] + +int isPrime(int number){ + int dividers = 0, i = 1; + + + while(i <= number){ + if(number % i++ ==0) + dividers++; + else + continue; + + if (dividers == 3) + return 0; + } + return (dividers == 2) +} +\end{lstlisting} +\columnbreak +\begin{lstlisting}[language=C,style=CCodeStyle] +int main(int argc, char *argv[]) { + int number; + int dividers = 0, i = 1; + printf("Enter number: "); + scanf("%d", &number); + while (i <= number) { + if (number++ % i == 0) { + dividers++; + } else { + continue; + } + if (dividers == 3) + break; + } + printf("Number %d is%s prime", + number, + (dividers == 2) ? "" : " not" + ); +} +\end{lstlisting} +\end{multicols} +Немного подправив вывод, внесем в него вызов функции \code{isPrime()} и объявим переменную \code{int num}, которую будем передавать в качестве аргумента в функцию \code{isPrime()}. Запустим нашу программу и убедимся что все работает – число 71 действительно является простым. + +\begin{figure}[h!] + \begin{lstlisting}[language=C,style=CCodeStyle] + int main (int argc, const char* argv[]) { + int num = 71; + printf("Entered number %d is%s prime \n", + number, + isPrime(num) ? "" : " not" + ); + return 0; + } + + \end{lstlisting} +\end{figure} +Теперь мы можем написать программы любой сложности, содержащие функции \code{isPrime()} или \code{sum()}. О том, что мы работаем с консолью, в нашем случае должна знать только функция \code{int main (int argc, char *argv[])}, поэтому ввод значений и вывод на экран мы оставим в ней, а подсчёты, проверки или другие важные действия и алгоритмы положим в функции. Именно это абстрагирование является сильной стороной использования функций, так, например, у нас нет необходимости каждый раз вставлять в программу код взаимодействия с консолью при выводе каждой строки, а можно ограничиться вызовом функции \code{printf();} +\subsection{Прототип функции, заголовочные файлы} +Зачастую возникают ситуации, когда функция не описана до точки входа в программу, или вовсе лежит в другом файле, возможно, даже написанном не нами. В этом случае мы должны сообщить компилятору, что такую функцию придётся дополнительно поискать. Для этого необходимо указать всю информацию о функции, кроме её тела. Такое объявление называется \textbf{прототип или определение функции} (англ. function definition). +\frm{С определением функции тесно связано понятие \textit{сигнатуры} функции. Сигнатура функции для разных языков программирования представляется немного разным составом сведений, так, например, в языке С сигнатура - это тип возвращаемого значения, название функции и порядок типов параметров, например, для функции суммирования чисел, описанной выше, это будет \code{int sum(int, int)}.} +Опишем прототип функции \code{isPrime()}, описав сигнатуру этой функции. Обратите внимание, что допустимо в определении функции также писать названия параметров, а не только их типы, но это необязательно. + +\begin{figure}[h!] +\begin{lstlisting}[language=C,style=CCodeStyle] + int isPrime(int number); +\end{lstlisting} +\end{figure} +Из таких определений часто составляют так называемые \textit{заголовочные файлы}. Заголовочные файлы это мощный инструмент модульной разработки. Мы уже неоднократно видели подключение заголовочного файла \code{stdio.h}, Обнаружив данный файл на диске компьютера, мы увидим, что в нём содержатся другие подключения библиотек, директивы препроцессора (о которых более подробно мы будем говорить на следующих занятиях) и прототипы функций (например, так часто используемой нами \code{printf()}). Заголовочным этот файл называется, потому что его обычно пишут в коде программы в самом верху, и фактически, компилятор просто вставляет его содержимое в текст программы. Расширение файла (\code{.h}) является сокращением от английского слова header, заголовок. Обратите внимание, что подключая заголовочный файл \code{stdio.h} мы получаем вообще всю функциональность стандартного ввода-вывода, то есть, например, работу с файлами, которую можем и не использовать. В стандарте С++20 было принято решение о переходе для поддержки повторяемости кода от заголовочных файлов к целостным модулям, импортируемым отдельно. Это позволяет интегрировать в программу только нужный функционал, игнорируя всю остальную библиотеку. \ No newline at end of file