fpga-lab-2/Top/niosII/synthesis/submodules/altera_merlin_slave_agent.sv

623 lines
29 KiB
Systemverilog

// (C) 2001-2018 Intel Corporation. All rights reserved.
// Your use of Intel Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files from any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Intel Program License Subscription
// Agreement, Intel FPGA IP License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Intel and sold by
// Intel or its authorized distributors. Please refer to the applicable
// agreement for further details.
// (C) 2001-2011 Altera Corporation. All rights reserved.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// $Id: //acds/rel/18.1std/ip/merlin/altera_merlin_slave_agent/altera_merlin_slave_agent.sv#1 $
// $Revision: #1 $
// $Date: 2018/07/18 $
// $Author: psgswbuild $
`timescale 1 ns / 1 ns
module altera_merlin_slave_agent
#(
// Packet parameters
parameter PKT_BEGIN_BURST = 81,
parameter PKT_DATA_H = 31,
parameter PKT_DATA_L = 0,
parameter PKT_SYMBOL_W = 8,
parameter PKT_BYTEEN_H = 71,
parameter PKT_BYTEEN_L = 68,
parameter PKT_ADDR_H = 63,
parameter PKT_ADDR_L = 32,
parameter PKT_TRANS_LOCK = 87,
parameter PKT_TRANS_COMPRESSED_READ = 67,
parameter PKT_TRANS_POSTED = 66,
parameter PKT_TRANS_WRITE = 65,
parameter PKT_TRANS_READ = 64,
parameter PKT_SRC_ID_H = 74,
parameter PKT_SRC_ID_L = 72,
parameter PKT_DEST_ID_H = 77,
parameter PKT_DEST_ID_L = 75,
parameter PKT_BURSTWRAP_H = 85,
parameter PKT_BURSTWRAP_L = 82,
parameter PKT_BYTE_CNT_H = 81,
parameter PKT_BYTE_CNT_L = 78,
parameter PKT_PROTECTION_H = 86,
parameter PKT_PROTECTION_L = 86,
parameter PKT_RESPONSE_STATUS_H = 89,
parameter PKT_RESPONSE_STATUS_L = 88,
parameter PKT_BURST_SIZE_H = 92,
parameter PKT_BURST_SIZE_L = 90,
parameter PKT_ORI_BURST_SIZE_L = 93,
parameter PKT_ORI_BURST_SIZE_H = 95,
parameter ST_DATA_W = 96,
parameter ST_CHANNEL_W = 32,
// Slave parameters
parameter ADDR_W = PKT_ADDR_H - PKT_ADDR_L + 1,
parameter AVS_DATA_W = PKT_DATA_H - PKT_DATA_L + 1,
parameter AVS_BURSTCOUNT_W = 4,
parameter PKT_SYMBOLS = AVS_DATA_W / PKT_SYMBOL_W,
// Slave agent parameters
parameter PREVENT_FIFO_OVERFLOW = 0,
parameter SUPPRESS_0_BYTEEN_CMD = 1,
parameter USE_READRESPONSE = 0,
parameter USE_WRITERESPONSE = 0,
// Derived slave parameters
parameter AVS_BE_W = PKT_BYTEEN_H - PKT_BYTEEN_L + 1,
parameter BURST_SIZE_W = 3,
// Derived FIFO width
parameter FIFO_DATA_W = ST_DATA_W + 1,
// ECC parameter
parameter ECC_ENABLE = 0
) (
input clk,
input reset,
// Universal-Avalon anti-slave
output [ADDR_W-1:0] m0_address,
output [AVS_BURSTCOUNT_W-1:0] m0_burstcount,
output [AVS_BE_W-1:0] m0_byteenable,
output m0_read,
input [AVS_DATA_W-1:0] m0_readdata,
input m0_waitrequest,
output m0_write,
output [AVS_DATA_W-1:0] m0_writedata,
input m0_readdatavalid,
output m0_debugaccess,
output m0_lock,
input [1:0] m0_response,
input m0_writeresponsevalid,
// Avalon-ST FIFO interfaces.
// Note: there's no need to include the "data" field here, at least for
// reads, since readdata is filled in from slave info. To keep life
// simple, have a data field, but fill it with 0s.
// Av-st response fifo source interface
output reg [FIFO_DATA_W-1:0] rf_source_data,
output rf_source_valid,
output rf_source_startofpacket,
output rf_source_endofpacket,
input rf_source_ready,
// Av-st response fifo sink interface
input [FIFO_DATA_W-1:0] rf_sink_data,
input rf_sink_valid,
input rf_sink_startofpacket,
input rf_sink_endofpacket,
output rf_sink_ready,
// Av-st readdata fifo src interface, data and response
// extra 2 bits for storing RESPONSE STATUS
output [AVS_DATA_W+1:0] rdata_fifo_src_data,
output rdata_fifo_src_valid,
input rdata_fifo_src_ready,
// Av-st readdata fifo sink interface
input [AVS_DATA_W+1:0] rdata_fifo_sink_data,
input rdata_fifo_sink_valid,
output rdata_fifo_sink_ready,
input rdata_fifo_sink_error,
// Av-st sink command packet interface
output cp_ready,
input cp_valid,
input [ST_DATA_W-1:0] cp_data,
input [ST_CHANNEL_W-1:0] cp_channel,
input cp_startofpacket,
input cp_endofpacket,
// Av-st source response packet interface
input rp_ready,
output reg rp_valid,
output reg [ST_DATA_W-1:0] rp_data,
output rp_startofpacket,
output rp_endofpacket
);
// --------------------------------------------------
// Ceil(log2()) function log2ceil of 4 = 2
// --------------------------------------------------
function integer log2ceil;
input reg[63:0] val;
reg [63:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i << 1;
end
end
endfunction
// ------------------------------------------------
// Local Parameters
// ------------------------------------------------
localparam DATA_W = PKT_DATA_H - PKT_DATA_L + 1;
localparam BE_W = PKT_BYTEEN_H - PKT_BYTEEN_L + 1;
localparam MID_W = PKT_SRC_ID_H - PKT_SRC_ID_L + 1;
localparam SID_W = PKT_DEST_ID_H - PKT_DEST_ID_L + 1;
localparam BYTE_CNT_W = PKT_BYTE_CNT_H - PKT_BYTE_CNT_L + 1;
localparam BURSTWRAP_W = PKT_BURSTWRAP_H - PKT_BURSTWRAP_L + 1;
localparam BURSTSIZE_W = PKT_BURST_SIZE_H - PKT_BURST_SIZE_L + 1;
localparam BITS_TO_MASK = log2ceil(PKT_SYMBOLS);
localparam MAX_BURST = 1 << (AVS_BURSTCOUNT_W - 1);
localparam BURSTING = (MAX_BURST > PKT_SYMBOLS);
// ------------------------------------------------
// Signals
// ------------------------------------------------
wire [DATA_W-1:0] cmd_data;
wire [BE_W-1:0] cmd_byteen;
wire [ADDR_W-1:0] cmd_addr;
wire [MID_W-1:0] cmd_mid;
wire [SID_W-1:0] cmd_sid;
wire cmd_read;
wire cmd_write;
wire cmd_compressed;
wire cmd_posted;
wire [BYTE_CNT_W-1:0] cmd_byte_cnt;
wire [BURSTWRAP_W-1:0] cmd_burstwrap;
wire [BURSTSIZE_W-1:0] cmd_burstsize;
wire cmd_debugaccess;
wire suppress_cmd;
wire byteen_asserted;
wire suppress_read;
wire suppress_write;
wire needs_response_synthesis;
wire generate_response;
// Assign command fields
assign cmd_data = cp_data[PKT_DATA_H :PKT_DATA_L ];
assign cmd_byteen = cp_data[PKT_BYTEEN_H:PKT_BYTEEN_L];
assign cmd_addr = cp_data[PKT_ADDR_H :PKT_ADDR_L ];
assign cmd_compressed = cp_data[PKT_TRANS_COMPRESSED_READ];
assign cmd_posted = cp_data[PKT_TRANS_POSTED];
assign cmd_write = cp_data[PKT_TRANS_WRITE];
assign cmd_read = cp_data[PKT_TRANS_READ];
assign cmd_mid = cp_data[PKT_SRC_ID_H :PKT_SRC_ID_L];
assign cmd_sid = cp_data[PKT_DEST_ID_H:PKT_DEST_ID_L];
assign cmd_byte_cnt = cp_data[PKT_BYTE_CNT_H:PKT_BYTE_CNT_L];
assign cmd_burstwrap = cp_data[PKT_BURSTWRAP_H:PKT_BURSTWRAP_L];
assign cmd_burstsize = cp_data[PKT_BURST_SIZE_H:PKT_BURST_SIZE_L];
assign cmd_debugaccess = cp_data[PKT_PROTECTION_L];
// Local "ready_for_command" signal: deasserted when the agent is unable to accept
// another command, e.g. rdv FIFO is full, (local readdata storage is full &&
// ~rp_ready), ...
// Say, this could depend on the type of command, for example, even if the
// rdv FIFO is full, a write request can be accepted. For later.
wire ready_for_command;
wire local_lock = cp_valid & cp_data[PKT_TRANS_LOCK];
wire local_write = cp_valid & cp_data[PKT_TRANS_WRITE];
wire local_read = cp_valid & cp_data[PKT_TRANS_READ];
wire local_compressed_read = cp_valid & cp_data[PKT_TRANS_COMPRESSED_READ];
wire nonposted_write_endofpacket = ~cp_data[PKT_TRANS_POSTED] & local_write & cp_endofpacket;
// num_symbols is PKT_SYMBOLS, appropriately sized.
wire [31:0] int_num_symbols = PKT_SYMBOLS;
wire [BYTE_CNT_W-1:0] num_symbols = int_num_symbols[BYTE_CNT_W-1:0];
generate
if (PREVENT_FIFO_OVERFLOW) begin : prevent_fifo_overflow_block
// ---------------------------------------------------
// Backpressure if the slave says to, or if FIFO overflow may occur.
//
// All commands are backpressured once the FIFO is full
// even if they don't need storage. This breaks a long
// combinatorial path from the master read/write through
// this logic and back to the master via the backpressure
// path.
//
// To avoid a loss of throughput the FIFO will be parameterized
// one slot deeper. The extra slot should never be used in normal
// operation, but should a slave misbehave and accept one more
// read than it should then backpressure will kick in.
//
// An example: assume a slave with MPRT = 2. It can accept a
// command sequence RRWW without backpressuring. If the FIFO is
// only 2 deep, we'd backpressure the writes leading to loss of
// throughput. If the FIFO is 3 deep, we'll only backpressure when
// RRR... which is an illegal condition anyway.
// ---------------------------------------------------
assign ready_for_command = rf_source_ready;
assign cp_ready = (~m0_waitrequest | suppress_cmd) && ready_for_command;
end else begin : no_prevent_fifo_overflow_block
// Do not suppress the command or the slave will
// not be able to waitrequest
assign ready_for_command = 1'b1;
// Backpressure only if the slave says to.
assign cp_ready = ~m0_waitrequest | suppress_cmd;
end
endgenerate
generate if (SUPPRESS_0_BYTEEN_CMD && !BURSTING) begin : suppress_0_byteen_cmd_non_bursting
assign byteen_asserted = |cmd_byteen;
assign suppress_read = ~byteen_asserted;
assign suppress_write = ~byteen_asserted;
assign suppress_cmd = ~byteen_asserted;
end else if (SUPPRESS_0_BYTEEN_CMD && BURSTING) begin: suppress_0_byteen_cmd_bursting
assign byteen_asserted = |cmd_byteen;
assign suppress_read = ~byteen_asserted;
assign suppress_write = 1'b0;
assign suppress_cmd = ~byteen_asserted && cmd_read;
end else begin : no_suppress_0_byteen_cmd
assign suppress_read = 1'b0;
assign suppress_write = 1'b0;
assign suppress_cmd = 1'b0;
end
endgenerate
// -------------------------------------------------------------------
// Extract avalon signals from command packet.
// -------------------------------------------------------------------
// Mask off the lower bits of address.
// The burst adapter before this component will break narrow sized packets
// into sub-bursts of length 1. However, the packet addresses are preserved,
// which means this component may see size-aligned addresses.
//
// Masking ensures that the addresses seen by an Avalon slave are aligned to
// the full data width instead of the size.
//
// Example:
// output from burst adapter (datawidth=4, size=2 bytes):
// subburst1 addr=0, subburst2 addr=2, subburst3 addr=4, subburst4 addr=6
// expected output from slave agent:
// subburst1 addr=0, subburst2 addr=0, subburst3 addr=4, subburst4 addr=4
generate
if (BITS_TO_MASK > 0) begin : mask_address
assign m0_address = { cmd_addr[ADDR_W-1:BITS_TO_MASK], {BITS_TO_MASK{1'b0}} };
end else begin : no_mask_address
assign m0_address = cmd_addr;
end
endgenerate
assign m0_byteenable = cmd_byteen;
assign m0_writedata = cmd_data;
// Note: no Avalon-MM slave in existence accepts uncompressed read bursts -
// this sort of burst exists only in merlin fabric ST packets. What to do
// if we see such a burst? All beats in that burst need to be transmitted
// to the slave so we have enough space-time for byteenable expression.
//
// There can be multiple bursts in a packet, but only one beat per burst
// in <most> cases. The exception is when we've decided not to insert a
// burst adapter for efficiency reasons, in which case this agent is also
// responsible for driving burstcount to 1 on each beat of an uncompressed
// read burst.
assign m0_read = ready_for_command & !suppress_read & (local_compressed_read | local_read);
generate
// AVS_BURSTCOUNT_W and BYTE_CNT_W may not be equal. Assign m0_burstcount
// from a sub-range, or 0-pad, as appropriate.
if (AVS_BURSTCOUNT_W > BYTE_CNT_W) begin : m0_burstcount_zero_pad
wire [AVS_BURSTCOUNT_W - BYTE_CNT_W - 1 : 0] zero_pad = {(AVS_BURSTCOUNT_W - BYTE_CNT_W) {1'b0}};
assign m0_burstcount = (local_read & ~local_compressed_read) ?
{zero_pad, num_symbols} :
{zero_pad, cmd_byte_cnt};
end
else begin : m0_burstcount_no_pad
assign m0_burstcount = (local_read & ~local_compressed_read) ?
num_symbols[AVS_BURSTCOUNT_W-1:0] :
cmd_byte_cnt[AVS_BURSTCOUNT_W-1:0];
end
endgenerate
assign m0_write = ready_for_command & local_write & !suppress_write;
assign m0_lock = ready_for_command & local_lock & (m0_read | m0_write);
assign m0_debugaccess = cmd_debugaccess;
// -------------------------------------------------------------------
// Indirection layer for response packet values. Some may always wire
// directly from the slave translator; others will no doubt emerge from
// various FIFOs.
// What to put in resp_data when a write occured? Answer: it does not
// matter, because only response status is needed for non-posted writes,
// and the packet already has a field for that.
//
// We use the rdata_fifo to store write responses as well. This allows us
// to handle backpressure on the response path, and allows write response
// merging.
assign rdata_fifo_src_valid = m0_readdatavalid | m0_writeresponsevalid;
assign rdata_fifo_src_data = {m0_response, m0_readdata};
// ------------------------------------------------------------------
// Generate a token when read commands are suppressed. The token
// is stored in the response FIFO, and will be used to synthesize
// a read response. The same token is used for non-posted write
// response synthesis.
//
// Note: this token is not generated for suppressed uncompressed read cycles;
// the burst uncompression logic at the read side of the response FIFO
// generates the correct number of responses.
//
// When the slave can return the response, let it do its job. Don't
// synthesize a response in that case, unless we've suppressed the
// the last transfer in a write sub-burst.
// ------------------------------------------------------------------
wire write_end_of_subburst;
assign needs_response_synthesis = ((local_read | local_compressed_read) & suppress_read) ||
(!USE_WRITERESPONSE && nonposted_write_endofpacket) ||
(USE_WRITERESPONSE && write_end_of_subburst && suppress_write);
// Avalon-ST interfaces to external response FIFO.
//
// For efficiency, when synthesizing a write response we only store a non-posted write
// transaction at its endofpacket, even if it was split into multiple sub-bursts.
//
// When not synthesizing write responses, we store each sub-burst in the FIFO.
// Each sub-burst to the slave will return a response, which corresponds to one
// entry in the FIFO. We merge all the sub-burst responses on the final
// sub-burst and send it on the response channel.
wire internal_cp_endofburst;
wire [31:0] minimum_bytecount_wire = PKT_SYMBOLS; // to solve qis warning
wire [AVS_BURSTCOUNT_W-1:0] minimum_bytecount;
assign minimum_bytecount = minimum_bytecount_wire[AVS_BURSTCOUNT_W-1:0];
assign internal_cp_endofburst = (cmd_byte_cnt == minimum_bytecount);
assign write_end_of_subburst = local_write & internal_cp_endofburst;
assign rf_source_valid = (local_read | local_compressed_read | (nonposted_write_endofpacket && !USE_WRITERESPONSE) | (USE_WRITERESPONSE && internal_cp_endofburst && local_write))
& ready_for_command & cp_ready;
assign rf_source_startofpacket = cp_startofpacket;
assign rf_source_endofpacket = cp_endofpacket;
always @* begin
// default: assign every command packet field to the response FIFO...
rf_source_data = {1'b0, cp_data};
// ... and override select fields as needed.
rf_source_data[FIFO_DATA_W-1] = needs_response_synthesis;
rf_source_data[PKT_DATA_H :PKT_DATA_L] = {DATA_W {1'b0}};
rf_source_data[PKT_BYTEEN_H :PKT_BYTEEN_L] = cmd_byteen;
rf_source_data[PKT_ADDR_H :PKT_ADDR_L] = cmd_addr;
rf_source_data[PKT_TRANS_COMPRESSED_READ] = cmd_compressed;
rf_source_data[PKT_TRANS_POSTED] = cmd_posted;
rf_source_data[PKT_TRANS_WRITE] = cmd_write;
rf_source_data[PKT_TRANS_READ] = cmd_read;
rf_source_data[PKT_SRC_ID_H :PKT_SRC_ID_L] = cmd_mid;
rf_source_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = cmd_sid;
rf_source_data[PKT_BYTE_CNT_H:PKT_BYTE_CNT_L] = cmd_byte_cnt;
rf_source_data[PKT_BURSTWRAP_H:PKT_BURSTWRAP_L] = cmd_burstwrap;
rf_source_data[PKT_BURST_SIZE_H:PKT_BURST_SIZE_L] = cmd_burstsize;
rf_source_data[PKT_PROTECTION_H:PKT_PROTECTION_L] = '0;
rf_source_data[PKT_PROTECTION_L] = cmd_debugaccess;
end
wire uncompressor_source_valid;
wire [BURSTSIZE_W-1:0] uncompressor_burstsize;
wire last_write_response;
// last_write_response indicates the last response of the broken-up write burst (sub-bursts).
// At this time, the final merged response is sent, and rp_valid is only asserted
// once for the whole burst.
generate
if (USE_WRITERESPONSE) begin
assign last_write_response = rf_sink_data[PKT_TRANS_WRITE] & rf_sink_endofpacket;
always @* begin
if (rf_sink_data[PKT_TRANS_WRITE] == 1)
rp_valid = (rdata_fifo_sink_valid | generate_response) & last_write_response & !rf_sink_data[PKT_TRANS_POSTED];
else
rp_valid = rdata_fifo_sink_valid | uncompressor_source_valid;
end
end else begin
assign last_write_response = 1'b0;
always @* begin
rp_valid = rdata_fifo_sink_valid | uncompressor_source_valid;
end
end
endgenerate
// ------------------------------------------------------------------
// Response merging
// ------------------------------------------------------------------
reg [1:0] current_response;
reg [1:0] response_merged;
generate
if (USE_WRITERESPONSE) begin : response_merging_all
reg first_write_response;
reg reset_merged_output;
reg [1:0] previous_response_in;
reg [1:0] previous_response;
always_ff @(posedge clk, posedge reset) begin
if (reset) begin
first_write_response <= 1'b1;
end
else begin // Merging work for write response, for read: previous_response_in = current_response
if (rf_sink_valid & (rdata_fifo_sink_valid | generate_response) & rf_sink_data[PKT_TRANS_WRITE]) begin
first_write_response <= 1'b0;
if (rf_sink_endofpacket)
first_write_response <= 1'b1;
end
end
end
always_comb begin
current_response = generate_response ? 2'b00 : rdata_fifo_sink_data[AVS_DATA_W+1:AVS_DATA_W] | {2{rdata_fifo_sink_error}};
reset_merged_output = first_write_response && (rdata_fifo_sink_valid || generate_response);
previous_response_in = reset_merged_output ? current_response : previous_response;
response_merged = current_response >= previous_response ? current_response: previous_response_in;
end
always_ff @(posedge clk or posedge reset) begin
if (reset) begin
previous_response <= 2'b00;
end
else begin
if (rf_sink_valid & (rdata_fifo_sink_valid || generate_response)) begin
previous_response <= response_merged;
end
end
end
end else begin : response_merging_read_only
always @* begin
current_response = generate_response ? 2'b00: rdata_fifo_sink_data[AVS_DATA_W+1:AVS_DATA_W] |
{2{rdata_fifo_sink_error}};
response_merged = current_response;
end
end
endgenerate
assign generate_response = rf_sink_data[FIFO_DATA_W-1];
wire [BYTE_CNT_W-1:0] rf_sink_byte_cnt = rf_sink_data[PKT_BYTE_CNT_H:PKT_BYTE_CNT_L];
wire rf_sink_compressed = rf_sink_data[PKT_TRANS_COMPRESSED_READ];
wire [BURSTWRAP_W-1:0] rf_sink_burstwrap = rf_sink_data[PKT_BURSTWRAP_H:PKT_BURSTWRAP_L];
wire [BURSTSIZE_W-1:0] rf_sink_burstsize = rf_sink_data[PKT_BURST_SIZE_H:PKT_BURST_SIZE_L];
wire [ADDR_W-1:0] rf_sink_addr = rf_sink_data[PKT_ADDR_H:PKT_ADDR_L];
// a non posted write response is always completed in 1 cycle. Modify the startofpacket signal to 1'b1 instead of taking whatever is in the rf_fifo
wire rf_sink_startofpacket_wire = rf_sink_data[PKT_TRANS_WRITE] ? 1'b1 : rf_sink_startofpacket;
wire [BYTE_CNT_W-1:0] burst_byte_cnt;
wire [BURSTWRAP_W-1:0] rp_burstwrap;
wire [ADDR_W-1:0] rp_address;
wire rp_is_compressed;
wire ready_for_response;
// ------------------------------------------------------------------
// We're typically ready for a response if the network is ready. There
// is one exception:
//
// If the slave issues write responses, we only issue a merged response on
// the final sub-burst. As a result, we only care about response channel
// availability on the final burst when we send out the merged response.
// ------------------------------------------------------------------
assign ready_for_response = (USE_WRITERESPONSE) ?
rp_ready || (rf_sink_data[PKT_TRANS_WRITE] && !last_write_response) || rf_sink_data[PKT_TRANS_POSTED]:
rp_ready;
// ------------------------------------------------------------------
// Backpressure the readdata fifo if we're supposed to synthesize a response.
// This may be a read response (for suppressed reads) or a write response
// (for non-posted writes).
// ------------------------------------------------------------------
assign rdata_fifo_sink_ready = rdata_fifo_sink_valid & ready_for_response & ~(rf_sink_valid & generate_response);
always @* begin
// By default, return all fields...
rp_data = rf_sink_data[ST_DATA_W - 1 : 0];
// ... and override specific fields.
rp_data[PKT_DATA_H :PKT_DATA_L] = rdata_fifo_sink_data[AVS_DATA_W-1:0];
// Assignments directly from the response fifo.
rp_data[PKT_TRANS_POSTED] = rf_sink_data[PKT_TRANS_POSTED];
rp_data[PKT_TRANS_WRITE] = rf_sink_data[PKT_TRANS_WRITE];
rp_data[PKT_SRC_ID_H :PKT_SRC_ID_L] = rf_sink_data[PKT_DEST_ID_H : PKT_DEST_ID_L];
rp_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = rf_sink_data[PKT_SRC_ID_H : PKT_SRC_ID_L];
rp_data[PKT_BYTEEN_H :PKT_BYTEEN_L] = rf_sink_data[PKT_BYTEEN_H : PKT_BYTEEN_L];
rp_data[PKT_PROTECTION_H:PKT_PROTECTION_L] = rf_sink_data[PKT_PROTECTION_H:PKT_PROTECTION_L];
// Burst uncompressor assignments
rp_data[PKT_ADDR_H :PKT_ADDR_L] = rp_address;
rp_data[PKT_BURSTWRAP_H:PKT_BURSTWRAP_L] = rp_burstwrap;
rp_data[PKT_BYTE_CNT_H:PKT_BYTE_CNT_L] = burst_byte_cnt;
rp_data[PKT_TRANS_READ] = rf_sink_data[PKT_TRANS_READ] | rf_sink_data[PKT_TRANS_COMPRESSED_READ];
rp_data[PKT_TRANS_COMPRESSED_READ] = rp_is_compressed;
rp_data[PKT_RESPONSE_STATUS_H:PKT_RESPONSE_STATUS_L] = response_merged;
rp_data[PKT_BURST_SIZE_H:PKT_BURST_SIZE_L] = uncompressor_burstsize;
// bounce the original size back to the master untouched
rp_data[PKT_ORI_BURST_SIZE_H:PKT_ORI_BURST_SIZE_L] = rf_sink_data[PKT_ORI_BURST_SIZE_H:PKT_ORI_BURST_SIZE_L];
end
// ------------------------------------------------------------------
// Note: the burst uncompressor may be asked to generate responses for
// write packets; these are treated the same as single-cycle uncompressed
// reads.
// ------------------------------------------------------------------
altera_merlin_burst_uncompressor #(
.ADDR_W (ADDR_W),
.BURSTWRAP_W (BURSTWRAP_W),
.BYTE_CNT_W (BYTE_CNT_W),
.PKT_SYMBOLS (PKT_SYMBOLS),
.BURST_SIZE_W (BURSTSIZE_W)
) uncompressor (
.clk (clk),
.reset (reset),
.sink_startofpacket (rf_sink_startofpacket_wire),
.sink_endofpacket (rf_sink_endofpacket),
.sink_valid (rf_sink_valid & (rdata_fifo_sink_valid | generate_response)),
.sink_ready (rf_sink_ready),
.sink_addr (rf_sink_addr),
.sink_burstwrap (rf_sink_burstwrap),
.sink_byte_cnt (rf_sink_byte_cnt),
.sink_is_compressed (rf_sink_compressed),
.sink_burstsize (rf_sink_burstsize),
.source_startofpacket (rp_startofpacket),
.source_endofpacket (rp_endofpacket),
.source_valid (uncompressor_source_valid),
.source_ready (ready_for_response),
.source_addr (rp_address),
.source_burstwrap (rp_burstwrap),
.source_byte_cnt (burst_byte_cnt),
.source_is_compressed (rp_is_compressed),
.source_burstsize (uncompressor_burstsize)
);
//--------------------------------------
// Assertion: In case slave support response. The slave needs return response in order
// Ex: non-posted write followed by a read: write response must complete before read data
//--------------------------------------
// synthesis translate_off
ERROR_write_response_and_read_response_cannot_happen_same_time:
assert property ( @(posedge clk)
disable iff (reset) !(m0_writeresponsevalid && m0_readdatavalid)
);
// synthesis translate_on
endmodule